def
Matroid.ModularCut.ExtIndep
{α : Type u_1}
{M : Matroid α}
(U : M.ModularCut)
(e : α)
(I : Set α)
:
U.ExtIndep e I means that I is independent in the matroid obtained from M
by adding an element e using U, so either I is independent not containing e,
or I = insert e J for some M-independent set J whose closure isn't in U.
Instances For
theorem
Matroid.ModularCut.extIndep_iff_of_notMem
{α : Type u_1}
{M : Matroid α}
{I : Set α}
{e : α}
{U : M.ModularCut}
(heI : e ∉ I)
:
theorem
Matroid.Indep.extIndep
{α : Type u_1}
{M : Matroid α}
{I : Set α}
{e : α}
{U : M.ModularCut}
(hI : M.Indep I)
(he : e ∉ M.E)
:
U.ExtIndep e I
theorem
Matroid.ModularCut.ExtIndep.subset
{α : Type u_1}
{M : Matroid α}
{I J : Set α}
{e : α}
{U : M.ModularCut}
(h : U.ExtIndep e I)
(hJI : J ⊆ I)
:
U.ExtIndep e J
theorem
Matroid.ModularCut.ExtIndep.subset_insert_ground
{α : Type u_1}
{M : Matroid α}
{I : Set α}
{e : α}
{U : M.ModularCut}
(h : U.ExtIndep e I)
:
Extend a matroid M by a new element e using a modular cut U.
(If e already belongs to M, then this deletes the existing element e first.)
Equations
Instances For
@[simp]
@[simp]
theorem
Matroid.extendBy_Indep
{α : Type u_1}
(M : Matroid α)
(e : α)
(U : M.ModularCut)
(a✝ : Set α)
:
@[simp]
theorem
Matroid.ModularCut.isRestriction_extendBy
{α : Type u_1}
{M : Matroid α}
{e : α}
(U : M.ModularCut)
(he : e ∉ M.E)
:
M.IsRestriction (M.extendBy e U)
theorem
Matroid.ModularCut.extendBy_injective
{α : Type u_1}
{e : α}
(M : Matroid α)
(he : e ∉ M.E)
:
Function.Injective (M.extendBy e)
Different modular cuts give different extensions.
Single-element extensions are equivalent to modular cuts.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Matroid.ModularCut.isFlat_extendBy_of_isFlat_of_notMem
{α : Type u_1}
{M : Matroid α}
{F : Set α}
{e : α}
(U : M.ModularCut)
(he : e ∉ M.E)
(hF : M.IsFlat F)
(hFU : F ∉ U)
:
instance
Matroid.ModularCut.instRankFiniteExtendBy
{α : Type u_1}
{M : Matroid α}
(U : M.ModularCut)
(e : α)
[M.RankFinite]
:
(M.extendBy e U).RankFinite
An extension of a finite-rank matroid is finite.
@[simp]
theorem
Matroid.ModularCut.extendBy_isLoop_iff
{α : Type u_1}
{M : Matroid α}
{e : α}
{U : M.ModularCut}
:
@[simp]
theorem
Matroid.ModularCut.extendBy_isNonloop_iff
{α : Type u_1}
{M : Matroid α}
{e : α}
{U : M.ModularCut}
: