Bridges #
theorem
Graph.IsLink.isBridge_iff_not_vertexConnected
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
{x y : α}
{e : β}
(he : G.IsLink e x y)
:
Staying Connected #
theorem
Graph.Connected.delete_first_connected_of_maximal_isPath
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
{P : WList α β}
(hG : G.Connected)
(hnt : G.vertexSet.Nontrivial)
(hP : Maximal (fun (P : WList α β) => G.IsPath P) P)
:
Deleting the first vertex of a maximal path of a connected graph gives a connected graph.
theorem
Graph.Connected.delete_last_connected_of_maximal_isPath
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
{P : WList α β}
(hG : G.Connected)
(hnt : G.vertexSet.Nontrivial)
(hP : Maximal (fun (P : WList α β) => G.IsPath P) P)
:
Deleting the last vertex of a maximal path of a connected graph gives a connected graph.
theorem
Graph.Connected.exists_delete_vertex_connected
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
[G.Finite]
(hG : G.Connected)
(hnt : G.vertexSet.Nontrivial)
:
Every finite connected graph on at least two vertices has a vertex whose deletion preserves its connectedness. (This requires a finite graph, since otherwise an infinite path is a counterexample.)