@[simp]
@[simp]
@[simp]
@[simp]
theorem
Graph.noEdge_not_inc
{α : Type u_1}
{β : Type u_2}
{x : α}
{e : β}
{V : Set α}
:
¬(Graph.noEdge V β).Inc e x
@[simp]
theorem
Graph.noEdge_not_isLoopAt
{α : Type u_1}
{β : Type u_2}
{x : α}
{e : β}
{V : Set α}
:
¬(Graph.noEdge V β).IsLoopAt e x
@[simp]
theorem
Graph.noEdge_not_isNonloopAt
{α : Type u_1}
{β : Type u_2}
{x : α}
{e : β}
{V : Set α}
:
¬(Graph.noEdge V β).IsNonloopAt e x
@[simp]
theorem
Graph.noEdge_not_adj
{α : Type u_1}
{β : Type u_2}
{x y : α}
{V : Set α}
:
¬(Graph.noEdge V β).Adj x y
Equations
- Graph.instOrderBot_matroid = { bot := Graph.noEdge ∅ β, bot_le := ⋯ }
@[simp]
@[simp]
A graph with a single edge e from u to v
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
@[simp]
@[simp]
Graphs with one vertex #
@[simp]
theorem
Graph.bouquet_not_isNonloopAt
{α : Type u_1}
{β : Type u_2}
{x v : α}
{e : β}
{F : Set β}
:
¬(bouquet v F).IsNonloopAt e x
Two vertices #
@[simp]
Complete graphs #
@[simp]
@[simp]