Documentation

Matroid.Graph.Constructions.Basic

def Graph.noEdge {α : Type u_1} (V : Set α) (β : Type u_3) :
Graph α β

The graph with vertex set V and no edges

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem Graph.noEdge_edgeSet {α : Type u_1} (V : Set α) (β : Type u_3) :
    @[simp]
    theorem Graph.noEdge_vertexSet {α : Type u_1} (V : Set α) (β : Type u_3) :
    @[simp]
    theorem Graph.noEdge_le_iff {α : Type u_1} {β : Type u_2} {G : Graph α β} {V : Set α} :
    @[simp]
    theorem Graph.noEdge_not_inc {α : Type u_1} {β : Type u_2} {x : α} {e : β} {V : Set α} :
    ¬(Graph.noEdge V β).Inc e x
    @[simp]
    theorem Graph.noEdge_not_isLoopAt {α : Type u_1} {β : Type u_2} {x : α} {e : β} {V : Set α} :
    @[simp]
    theorem Graph.noEdge_not_isNonloopAt {α : Type u_1} {β : Type u_2} {x : α} {e : β} {V : Set α} :
    @[simp]
    theorem Graph.noEdge_not_adj {α : Type u_1} {β : Type u_2} {x y : α} {V : Set α} :
    ¬(Graph.noEdge V β).Adj x y
    theorem Graph.edgeSet_eq_empty_iff {α : Type u_1} {β : Type u_2} {G : Graph α β} :
    @[simp]
    theorem Graph.le_noEdge_iff {α : Type u_1} {β : Type u_2} {G : Graph α β} {X : Set α} :
    instance Graph.instOrderBot_matroid {α : Type u_1} {β : Type u_2} :
    OrderBot (Graph α β)
    Equations
    @[simp]
    theorem Graph.bot_vertexSet {α : Type u_1} {β : Type u_2} :
    @[simp]
    theorem Graph.bot_edgeSet {α : Type u_1} {β : Type u_2} :
    @[simp]
    theorem Graph.bot_isClosedSubgraph {α : Type u_1} {β : Type u_2} (G : Graph α β) :
    @[simp]
    theorem Graph.bot_isInducedSubgraph {α : Type u_1} {β : Type u_2} (G : Graph α β) :
    @[simp]
    theorem Graph.noEdge_empty {α : Type u_1} {β : Type u_2} :
    theorem Graph.eq_bot_or_vertexSet_nonempty {α : Type u_1} {β : Type u_2} (G : Graph α β) :
    @[simp]
    theorem Graph.vertexSet_eq_empty_iff {α : Type u_1} {β : Type u_2} {G : Graph α β} :
    @[simp]
    theorem Graph.vertexSet_nonempty_iff {α : Type u_1} {β : Type u_2} {G : Graph α β} :
    theorem Graph.ne_bot_of_mem_vertexSet {α : Type u_1} {β : Type u_2} {x : α} {G : Graph α β} (h : x G.vertexSet) :
    instance Graph.instInhabited_matroid {α : Type u_1} {β : Type u_2} :
    Equations
    def Graph.singleEdge {α : Type u_1} {β : Type u_2} (u v : α) (e : β) :
    Graph α β

    A graph with a single edge e from u to v

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem Graph.singleEdge_edgeSet {α : Type u_1} {β : Type u_2} (u v : α) (e : β) :
      @[simp]
      theorem Graph.singleEdge_vertexSet {α : Type u_1} {β : Type u_2} (u v : α) (e : β) :
      theorem Graph.singleEdge_comm {α : Type u_1} {β : Type u_2} (u v : α) (e : β) :
      @[simp]
      theorem Graph.singleEdge_inc_iff {α : Type u_1} {β : Type u_2} {x u v : α} {e f : β} :
      (Graph.singleEdge u v e).Inc f x f = e (x = u x = v)
      @[simp]
      theorem Graph.singleEdge_adj_iff {α : Type u_1} {β : Type u_2} {x y u v : α} {e : β} :
      (Graph.singleEdge u v e).Adj x y x = u y = v x = v y = u
      @[simp]
      theorem Graph.singleEdge_le_iff {α : Type u_1} {β : Type u_2} {u v : α} {e : β} {G : Graph α β} :
      Graph.singleEdge u v e G G.IsLink e u v

      Graphs with one vertex #

      def Graph.bouquet {α : Type u_1} {β : Type u_2} (v : α) (F : Set β) :
      Graph α β

      A graph with one vertex and loops at that vertex

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem Graph.bouquet_edgeSet {α : Type u_1} {β : Type u_2} (v : α) (F : Set β) :
        (bouquet v F).edgeSet = F
        @[simp]
        theorem Graph.bouquet_vertexSet {α : Type u_1} {β : Type u_2} (v : α) (F : Set β) :
        @[simp]
        theorem Graph.bouquet_inc_iff {α : Type u_1} {β : Type u_2} {x v : α} {e : β} {F : Set β} :
        (bouquet v F).Inc e x e F x = v
        @[simp]
        theorem Graph.bouquet_isLoopAt {α : Type u_1} {β : Type u_2} {x v : α} {e : β} {F : Set β} :
        (bouquet v F).IsLoopAt e x e F x = v
        @[simp]
        theorem Graph.bouquet_not_isNonloopAt {α : Type u_1} {β : Type u_2} {x v : α} {e : β} {F : Set β} :
        theorem Graph.eq_bouquet {α : Type u_1} {β : Type u_2} {v : α} {G : Graph α β} (hv : v G.vertexSet) (hss : G.vertexSet.Subsingleton) :

        Every graph on just one vertex is a bouquet on that vertex

        theorem Graph.exists_eq_bouquet_edge {α : Type u_1} {β : Type u_2} {v : α} {G : Graph α β} (hv : v G.vertexSet) (hss : G.vertexSet.Subsingleton) :
        ∃ (F : Set β), G = bouquet v F

        Every graph on just one vertex is a bouquet on that vertex

        theorem Graph.exists_eq_bouquet {α : Type u_1} {β : Type u_2} {G : Graph α β} (hne : G.vertexSet.Nonempty) (hss : G.vertexSet.Subsingleton) :
        ∃ (x : α) (F : Set β), G = bouquet x F
        theorem Graph.bouquet_empty {α : Type u_1} {β : Type u_2} (v : α) :
        theorem Graph.bouquet_mono {α : Type u_1} {β : Type u_2} (v : α) {X Y : Set β} (hss : X Y) :

        Two vertices #

        def Graph.banana {α : Type u_1} {β : Type u_2} (a b : α) (F : Set β) :
        Graph α β

        A graph with exactly two vertices and no loops.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem Graph.banana_edgeSet {α : Type u_1} {β : Type u_2} (a b : α) (F : Set β) :
          (banana a b F).edgeSet = F
          @[simp]
          theorem Graph.banana_vertexSet {α : Type u_1} {β : Type u_2} (a b : α) (F : Set β) :
          (banana a b F).vertexSet = {a, b}
          @[simp]
          theorem Graph.banana_inc_iff {α : Type u_1} {β : Type u_2} {x a b : α} {e : β} {F : Set β} :
          (banana a b F).Inc e x e F (x = a x = b)
          theorem Graph.banana_comm {α : Type u_1} {β : Type u_2} (a b : α) (F : Set β) :
          banana a b F = banana b a F
          @[simp]
          theorem Graph.banana_isNonloopAt_iff {α : Type u_1} {β : Type u_2} {x a b : α} {e : β} {F : Set β} :
          (banana a b F).IsNonloopAt e x e F (x = a x = b) a b
          @[simp]
          theorem Graph.banana_isLoopAt_iff {α : Type u_1} {β : Type u_2} {x a b : α} {e : β} {F : Set β} :
          (banana a b F).IsLoopAt e x e F x = a a = b
          @[simp]
          theorem Graph.banana_singleton {α : Type u_1} {β : Type u_2} {a b : α} (e : β) :
          theorem Graph.banana_mono {α : Type u_1} {β : Type u_2} {a b : α} {X Y : Set β} (hXY : X Y) :
          banana a b X ≤s banana a b Y

          Complete graphs #

          The complete graph on n vertices.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem Graph.CompleteGraph_edgeSet (n : ) :
            (CompleteGraph n).edgeSet = {s : Sym2 | (∀ is, i < n) ¬s.IsDiag}
            @[simp]
            theorem Graph.CompleteGraph_adj (n x y : ) (hx : x < n) (hy : y < n) :
            (CompleteGraph n).Adj x y x y
            def Graph.IsComplete {α : Type u_1} {β : Type u_2} (G : Graph α β) :
            Equations
            Instances For
              def Graph.StarGraph {α : Type u_1} {β : Type u_2} (v : α) (f : β →. α) :
              Graph α β

              The star graph with n leaves with center v

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem Graph.StarGraph_vertexSet {α : Type u_1} {β : Type u_2} (v : α) (f : β →. α) :
                @[simp]
                theorem Graph.StarGraph_edgeSet {α : Type u_1} {β : Type u_2} (v : α) (f : β →. α) :

                Graph constructor from a list of pairs of vertices #

                def Graph.fromList {α : Type u_1} (S : Set α) (l : List (α × α)) :

                The graph with vertex set S and edges over between pairs of vertices according to the list l.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem Graph.fromList_vertexSet {α : Type u_1} (S : Set α) (l : List (α × α)) :
                  (fromList S l).vertexSet = S {x : α | pl, x = p.1 x = p.2}
                  @[simp]
                  theorem Graph.fromList_edgeSet {α : Type u_1} (S : Set α) (l : List (α × α)) :