noncomputable def
Graph.WithTop.sInter
{α : Type u_1}
{β : Type u_2}
(s : Set (WithTop (Graph α β)))
:
Equations
- Graph.WithTop.sInter s = if hs : ∃ (G : Graph α β), ↑G ∈ s then ↑(Graph.sInter (WithTop.some ⁻¹' s) hs) else ⊤
Instances For
noncomputable instance
Graph.WithTop.instCompleteSemilatticeInfWithTop_matroid
{α : Type u_1}
{β : Type u_2}
:
CompleteSemilatticeInf (WithTop (Graph α β))
Equations
- Graph.WithTop.instCompleteSemilatticeInfWithTop_matroid = { toPartialOrder := WithTop.partialOrder, sInf := Graph.WithTop.sInter, sInf_le := ⋯, le_sInf := ⋯ }
noncomputable instance
Graph.WithTop.instCompleteLatticeWithTop_matroid
{α : Type u_1}
{β : Type u_2}
:
CompleteLattice (WithTop (Graph α β))
Equations
- One or more equations did not get rendered due to their size.
Equations
- Graph.Subgraph.instPartialOrder = inferInstanceAs (PartialOrder { H : Graph α β // H ≤ G })
@[simp]
theorem
Graph.Subgraph.compatible
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
(H₁ H₂ : G.Subgraph)
:
(↑H₁).Compatible ↑H₂
@[simp]
theorem
Graph.Subgraph.pairwise_compatible
{α : Type u_1}
{β : Type u_2}
{ι : Type u_3}
{G : Graph α β}
(H : ι → G.Subgraph)
:
Pairwise (Function.onFun Compatible fun (i : ι) => ↑(H i))
The proof that the subgraphs of a graph G form a completely distributive lattice.
Equations
- One or more equations did not get rendered due to their size.
theorem
Graph.Subgraph.disjoint_iff
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
(H₁ H₂ : G.Subgraph)
:
The proof that the subgraphs of a graph G form a completely distributive lattice.
Equations
- Graph.Subgraph.minAx = { toCompleteLattice := Graph.Subgraph.instCompleteLattice, iInf_iSup_eq := ⋯ }
Instances For
instance
Graph.Subgraph.instCompletelyDistribLattice
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
:
The subgraphs of a graph G form a completely distributive lattice.
Equations
The order embedding from closed subgraphs to subgraphs
Instances For
@[simp]
@[simp]
theorem
Graph.ClosedSubgraph.coe_toSubgraph
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
(H : G.ClosedSubgraph)
:
@[simp]
instance
Graph.ClosedSubgraph.instCoeOut
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
:
CoeOut G.ClosedSubgraph (Graph α β)
Equations
- Graph.ClosedSubgraph.instCoeOut = { coe := fun (H : G.ClosedSubgraph) => ↑H }
@[simp]
theorem
Graph.ClosedSubgraph.mk_le_iff
{α : Type u_1}
{β : Type u_2}
{G H₁ : Graph α β}
{hH₁ : H₁.IsClosedSubgraph G}
{H : G.ClosedSubgraph}
:
@[simp]
theorem
Graph.ClosedSubgraph.le_mk_iff
{α : Type u_1}
{β : Type u_2}
{G H₁ : Graph α β}
{hH₁ : H₁.IsClosedSubgraph G}
{H : G.ClosedSubgraph}
:
Equations
- One or more equations did not get rendered due to their size.
theorem
Graph.ClosedSubgraph.coe_le_coe
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
{H₀ H : G.ClosedSubgraph}
:
theorem
Graph.ClosedSubgraph.coe_lt_coe
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
{H₀ H : G.ClosedSubgraph}
:
theorem
Graph.ClosedSubgraph.toSubgraph_le_toSubgraph
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
{H₁ H₂ : G.ClosedSubgraph}
:
theorem
Graph.ClosedSubgraph.toSubgraph_lt_toSubgraph
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
{H₁ H₂ : G.ClosedSubgraph}
:
@[simp]
theorem
Graph.ClosedSubgraph.coe_sup
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
(H₁ H₂ : G.ClosedSubgraph)
:
@[simp]
theorem
Graph.ClosedSubgraph.coe_inf
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
(H₁ H₂ : G.ClosedSubgraph)
:
@[simp]
theorem
Graph.ClosedSubgraph.pairwise_compatible
{α : Type u_1}
{β : Type u_2}
{ι : Type u_3}
{G : Graph α β}
(H : ι → G.ClosedSubgraph)
:
Pairwise (Function.onFun Compatible fun (i : ι) => ↑(H i))
@[simp]
theorem
Graph.ClosedSubgraph.set_pairwise_compatible
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
(s : Set G.ClosedSubgraph)
:
instance
Graph.ClosedSubgraph.instCompleteBooleanAlgebra
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
:
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
Graph.ClosedSubgraph.toSubgraph_sSup
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
(s : Set G.ClosedSubgraph)
:
@[simp]
theorem
Graph.ClosedSubgraph.coe_sSup
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
(s : Set G.ClosedSubgraph)
:
@[simp]
theorem
Graph.ClosedSubgraph.toSubgraph_iSup
{α : Type u_1}
{β : Type u_2}
{ι : Type u_3}
{G : Graph α β}
(f : ι → G.ClosedSubgraph)
:
@[simp]
theorem
Graph.ClosedSubgraph.coe_iSup
{α : Type u_1}
{β : Type u_2}
{ι : Type u_3}
{G : Graph α β}
(f : ι → G.ClosedSubgraph)
(hf : Pairwise (Function.onFun Compatible fun (i : ι) => ↑(f i)))
:
@[simp]
theorem
Graph.ClosedSubgraph.toSubgraph_iInf
{α : Type u_1}
{β : Type u_2}
{ι : Type u_3}
{G : Graph α β}
(f : ι → G.ClosedSubgraph)
:
@[simp]
theorem
Graph.ClosedSubgraph.coe_iInf_of_nonempty
{α : Type u_1}
{β : Type u_2}
{ι : Type u_3}
{G : Graph α β}
[Nonempty ι]
(f : ι → G.ClosedSubgraph)
:
@[simp]
theorem
Graph.ClosedSubgraph.coe_iInf_of_empty
{α : Type u_1}
{β : Type u_2}
{ι : Type u_3}
{G : Graph α β}
[IsEmpty ι]
(f : ι → G.ClosedSubgraph)
:
@[simp]
theorem
Graph.ClosedSubgraph.toSubgraph_sInf
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
(s : Set G.ClosedSubgraph)
:
@[simp]
theorem
Graph.ClosedSubgraph.coe_sInf
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
(s : Set G.ClosedSubgraph)
:
@[simp]
theorem
Graph.ClosedSubgraph.coe_sInf_of_nonempty
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
{s : Set G.ClosedSubgraph}
(hs : s.Nonempty)
:
instance
Graph.ClosedSubgraph.instCompleteAtomicBooleanAlgebra
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
:
Equations
- Graph.ClosedSubgraph.instCompleteAtomicBooleanAlgebra = { toCompleteBooleanAlgebra := Graph.ClosedSubgraph.instCompleteBooleanAlgebra, iInf_iSup_eq := ⋯ }
theorem
Graph.ClosedSubgraph.compatible
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
(H₁ H₂ : G.ClosedSubgraph)
:
(↑H₁).Compatible ↑H₂
@[simp]
theorem
Graph.ClosedSubgraph.coe_eq_induce
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
(H : G.ClosedSubgraph)
:
theorem
Graph.ClosedSubgraph.ext_vertexSet
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
{H₁ H₂ : G.ClosedSubgraph}
(h : (↑H₁).vertexSet = (↑H₂).vertexSet)
:
theorem
Graph.ClosedSubgraph.vertexSet_injective
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
:
Function.Injective fun (x : G.ClosedSubgraph) => (↑x).vertexSet
theorem
Graph.ClosedSubgraph.vertexSet_strictMono
{α : Type u_1}
{β : Type u_2}
(G : Graph α β)
:
StrictMono fun (x : G.ClosedSubgraph) => (↑x).vertexSet
theorem
Graph.ClosedSubgraph.disjoint_iff
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
(H₁ H₂ : G.ClosedSubgraph)
:
theorem
Graph.ClosedSubgraph.disjoint_iff_val_disjoint
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
(H₁ H₂ : G.ClosedSubgraph)
:
theorem
Graph.ClosedSubgraph.isAtom_iff_isCompOf
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
(H : G.ClosedSubgraph)
:
theorem
Graph.IsClosedSubgraph.eq_induce
{α : Type u_1}
{β : Type u_2}
{G H₁ : Graph α β}
(hcl : H₁.IsClosedSubgraph G)
:
theorem
Graph.IsClosedSubgraph.vertexSet_inj
{α : Type u_1}
{β : Type u_2}
{G H₁ H₂ : Graph α β}
(hcl₁ : H₁.IsClosedSubgraph G)
(hcl₂ : H₂.IsClosedSubgraph G)
:
theorem
Graph.IsClosedSubgraph.eq_ambient_of_subset_vertexSet
{α : Type u_1}
{β : Type u_2}
{G H : Graph α β}
(hcl : H.IsClosedSubgraph G)
(h : G.vertexSet ⊆ H.vertexSet)
:
theorem
Graph.IsClosedSubgraph.le_iff_vertexSet_subset
{α : Type u_1}
{β : Type u_2}
{G H₁ H₂ : Graph α β}
(hcl₁ : H₁.IsClosedSubgraph G)
(hcl₂ : H₂.IsClosedSubgraph G)
:
theorem
Graph.IsClosedSubgraph.lt_iff_vertexSet_ssubset
{α : Type u_1}
{β : Type u_2}
{G H₁ H₂ : Graph α β}
(hcl₁ : H₁.IsClosedSubgraph G)
(hcl₂ : H₂.IsClosedSubgraph G)
:
theorem
Graph.IsCompOf.stronglyDisjoint_of_ne
{α : Type u_1}
{β : Type u_2}
{G H₁ H₂ : Graph α β}
(hco₁ : H₁.IsCompOf G)
(hco₂ : H₂.IsCompOf G)
(hne : H₁ ≠ H₂)
:
H₁.StronglyDisjoint H₂
Distinct components are vertex-disjoint.