Documentation

Matroid.Graph.Tree

structure Graph.IsTree {α : Type u_1} {β : Type u_2} (T : Graph α β) :
Instances For
    theorem Graph.isTree_iff {α : Type u_1} {β : Type u_2} (T : Graph α β) :
    theorem Graph.IsForest.isTree_of_IsCompOf {α : Type u_1} {β : Type u_2} {G T : Graph α β} (hG : G.IsForest) (hT : T.IsCompOf G) :
    theorem Graph.Connected.isTree_of_maximal_isAcyclicSet {α : Type u_1} {β : Type u_2} {G : Graph α β} {F : Set β} (hG : G.Connected) (hF : Maximal G.IsAcyclicSet F) :

    If G is connected, then a maximally acylic subgraph of G is connected. The correct statement is that any two vertices connected in the big graph are connected in the small one. TODO : Write the proof completely in terms of IsAcyclicSet

    theorem Graph.Connected.exists_isTree_spanningSubgraph {α : Type u_1} {β : Type u_2} {G : Graph α β} (hG : G.Connected) :
    ∃ (T : Graph α β), T.IsTree T ≤s G

    Every connected graph has a spanning tree

    theorem Graph.IsTree.exists_delete_vertex_isTree {α : Type u_1} {β : Type u_2} {T : Graph α β} [T.Finite] (hT : T.IsTree) (hnt : T.vertexSet.Nontrivial) :
    vT.vertexSet, (T - {v}).IsTree
    theorem Graph.IsLeaf.delete_isTree {α : Type u_1} {β : Type u_2} {T : Graph α β} {x : α} (hT : T.IsTree) (hx : T.IsLeaf x) :
    (T - {x}).IsTree
    @[irreducible]
    theorem Graph.IsTree.encard_vertexSet {α : Type u_1} {β : Type u_2} {T : Graph α β} (h : T.IsTree) :
    theorem Graph.IsTree.ncard_vertexSet {α : Type u_1} {β : Type u_2} {T : Graph α β} [T.Finite] (h : T.IsTree) :
    theorem Graph.IsForest.encard_vertexSet {α : Type u_1} {β : Type u_2} {G : Graph α β} (hG : G.IsForest) :
    theorem Graph.IsForest.ncard_vertexSet {α : Type u_1} {β : Type u_2} {G : Graph α β} [G.Finite] (hG : G.IsForest) :
    theorem Graph.IsForest.encard_edgeSet_add_one_le {α : Type u_1} {β : Type u_2} {G : Graph α β} (hG : G.IsForest) (hne : G.vertexSet.Nonempty) :
    theorem Graph.IsForest.ncard_edgeSet_lt {α : Type u_1} {β : Type u_2} {G : Graph α β} [G.Finite] (hG : G.IsForest) (hne : G.vertexSet.Nonempty) :
    theorem Graph.Connected.encard_vertexSet_le {α : Type u_1} {β : Type u_2} {G : Graph α β} (hG : G.Connected) :
    theorem Graph.Connected.ncard_vertexSet_le {α : Type u_1} {β : Type u_2} {G : Graph α β} [G.Finite] (hG : G.Connected) :