Documentation
Matroid
.
Minor
.
Contract
Search
return to top
source
Imports
Init
Matroid.Minor.Delete
Mathlib.Combinatorics.Matroid.Minor.Contract
Imported by
Matroid
.
freeOn_contract
Matroid
.
loopyOn_contract
Matroid
.
contract_eq_loopyOn_of_spanning
Matroid
.
contract_ground_self
Matroid
.
contract_map
Matroid
.
contract_comap
source
@[simp]
theorem
Matroid
.
freeOn_contract
{
α
:
Type
u_1}
(
E
X
:
Set
α
)
:
(
freeOn
E
)
.
contract
X
=
freeOn
(
E
\
X
)
source
@[simp]
theorem
Matroid
.
loopyOn_contract
{
α
:
Type
u_1}
(
E
X
:
Set
α
)
:
(
loopyOn
E
)
.
contract
X
=
loopyOn
(
E
\
X
)
source
theorem
Matroid
.
contract_eq_loopyOn_of_spanning
{
α
:
Type
u_1}
{
M
:
Matroid
α
}
{
C
:
Set
α
}
(
h
:
M
.
Spanning
C
)
:
M
.
contract
C
=
loopyOn
(
M
.
E
\
C
)
source
@[simp]
theorem
Matroid
.
contract_ground_self
{
α
:
Type
u_1}
(
M
:
Matroid
α
)
:
M
.
contract
M
.
E
=
emptyOn
α
source
theorem
Matroid
.
contract_map
{
α
:
Type
u_1}
{
β
:
Type
u_2}
{
M
:
Matroid
α
}
{
f
:
α
→
β
}
(
hf
:
Set.InjOn
f
M
.
E
)
{
C
:
Set
α
}
(
hC
:
C
⊆
M
.
E
)
:
(
M
.
contract
C
)
.
map
f
⋯
=
(
M
.
map
f
hf
)
.
contract
(
f
''
C
)
source
theorem
Matroid
.
contract_comap
{
α
:
Type
u_1}
{
β
:
Type
u_2}
(
M
:
Matroid
β
)
(
f
:
α
→
β
)
{
C
:
Set
β
}
(
hC
:
C
⊆
Set.range
f
)
:
(
M
.
contract
C
)
.
comap
f
=
(
M
.
comap
f
)
.
contract
(
f
⁻¹'
C
)