Documentation

Matroid.Minor.Contract

@[simp]
theorem Matroid.freeOn_contract {α : Type u_1} (E X : Set α) :
(freeOn E).contract X = freeOn (E \ X)
@[simp]
theorem Matroid.loopyOn_contract {α : Type u_1} (E X : Set α) :
(loopyOn E).contract X = loopyOn (E \ X)
theorem Matroid.contract_eq_loopyOn_of_spanning {α : Type u_1} {M : Matroid α} {C : Set α} (h : M.Spanning C) :
M.contract C = loopyOn (M.E \ C)
@[simp]
theorem Matroid.contract_ground_self {α : Type u_1} (M : Matroid α) :
theorem Matroid.contract_map {α : Type u_1} {β : Type u_2} {M : Matroid α} {f : αβ} (hf : Set.InjOn f M.E) {C : Set α} (hC : C M.E) :
(M.contract C).map f = (M.map f hf).contract (f '' C)
theorem Matroid.contract_comap {α : Type u_1} {β : Type u_2} (M : Matroid β) (f : αβ) {C : Set β} (hC : C Set.range f) :
(M.contract C).comap f = (M.comap f).contract (f ⁻¹' C)