Documentation

Matroid.Representation.FundamentalMatrix

noncomputable def Matroid.IsBase.coords {α : Type u_1} {B : Set α} {M : Matroid α} [M.Finitary] (hB : M.IsBase B) (e : α) :
Finset B

The intersection of M.fundCircuit e B with B as a Finset B in a finitary matroid.

Equations
Instances For
    theorem Matroid.IsBase.coords_of_mem {α : Type u_1} {e : α} {B : Set α} {M : Matroid α} [M.Finitary] (hB : M.IsBase B) (he : e B) :
    hB.coords e = {e, he}
    theorem Matroid.IsBase.coords_of_notMem_ground {α : Type u_1} {e : α} {B : Set α} {M : Matroid α} [M.Finitary] (hB : M.IsBase B) (heE : eM.E) :
    hB.coords e =
    theorem Matroid.IsBase.coords_toSet {α : Type u_1} {e : α} {B : Set α} {M : Matroid α} [M.Finitary] (hB : M.IsBase B) :
    theorem Matroid.IsBase.fundCircuit_eq_insert_map {α : Type u_1} {e : α} {B : Set α} {M : Matroid α} [M.Finitary] [DecidableEq α] (hB : M.IsBase B) :
    noncomputable def Matroid.IsBase.fundCoord {α : Type u_1} {B : Set α} {M : Matroid α} [M.Finitary] (hB : M.IsBase B) (R : Type u_7) [Semiring R] (e : α) :
    B →₀ R

    The column of the B-fundamental matrix of M corresponding to e, as a Finsupp.

    Equations
    Instances For
      theorem Matroid.IsBase.fundCoord_of_mem {α : Type u_1} {e : α} {B : Set α} {M : Matroid α} [M.Finitary] {R : Type u_7} [DivisionRing R] (hB : M.IsBase B) (he : e B) :
      @[simp]
      theorem Matroid.IsBase.fundCoord_mem {α : Type u_1} {B : Set α} {M : Matroid α} [M.Finitary] {R : Type u_7} [DivisionRing R] (hB : M.IsBase B) (e : B) :
      hB.fundCoord R e = Finsupp.single e 1
      theorem Matroid.IsBase.fundCoord_of_notMem_ground {α : Type u_1} {e : α} {B : Set α} {M : Matroid α} [M.Finitary] {R : Type u_7} [DivisionRing R] (hB : M.IsBase B) (he : eM.E) :
      hB.fundCoord R e = 0
      theorem Matroid.IsBase.support_fundCoord_subset {α : Type u_1} {B : Set α} {M : Matroid α} [M.Finitary] {R : Type u_7} [DivisionRing R] (hB : M.IsBase B) :
      theorem Matroid.IsBase.fundCoord_support {α : Type u_1} {e : α} {B : Set α} {M : Matroid α} [M.Finitary] {R : Type u_7} [DivisionRing R] (hB : M.IsBase B) :
      theorem Matroid.IsBase.mem_fundCoord_support {α : Type u_1} {B : Set α} {M : Matroid α} [M.Finitary] {R : Type u_7} [DivisionRing R] (hB : M.IsBase B) (e : B) {f : α} :
      e (hB.fundCoord R f).support e M.fundCircuit f B
      theorem Matroid.IsBase.fundCoord_isBase {α : Type u_1} {B : Set α} {M : Matroid α} [M.Finitary] {R : Type u_7} [DivisionRing R] (hB : M.IsBase B) :
      theorem Matroid.IsBase.fundCoord_eq_linearCombination {α : Type u_1} {e : α} {B : Set α} {M : Matroid α} [M.Finitary] {R : Type u_7} [DivisionRing R] (hB : M.IsBase B) :
      hB.fundCoord R e = (Finsupp.linearCombination R fun (x : B) => Finsupp.single x 1) (hB.fundCoord R e)
      theorem Matroid.IsBase.fundCoord_isStandard {α : Type u_1} {B : Set α} {M : Matroid α} [M.Finitary] (hB : M.IsBase B) (R : Type u_8) [DivisionRing R] :
      theorem Matroid.fundCoord_fundCircuit {α : Type u_1} {e : α} {B : Set α} {M : Matroid α} [M.Finitary] {R : Type u_7} [DivisionRing R] (hB : M.IsBase B) (heB : eB) (heE : e M.E) :
      theorem Matroid.IsBase.fundCoord_row_support {α : Type u_1} {B : Set α} {M : Matroid α} [M.Finitary] (hB : M.IsBase B) (R : Type u_8) [DivisionRing R] (e : B) :
      (Function.support fun (x : α) => (hB.fundCoord R x) e) = M.fundCocircuit (↑e) B