theorem
Graph.Inc.isNonloopAt
{α : Type u_1}
{β : Type u_2}
{x : α}
{e : β}
{G : Graph α β}
[G.Loopless]
(h : G.Inc e x)
:
G.IsNonloopAt e x
instance
Graph.instLooplessEdgeRestrict
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
[G.Loopless]
(F : Set β)
:
(G.edgeRestrict F).Loopless
instance
Graph.instLooplessEdgeDelete
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
[G.Loopless]
(F : Set β)
:
(G.edgeDelete F).Loopless
instance
Graph.instSimpleEdgeRestrict
{α : Type u_1}
{β : Type u_2}
{F : Set β}
{G : Graph α β}
[G.Simple]
:
(G.edgeRestrict F).Simple
instance
Graph.instSimpleEdgeDelete
{α : Type u_1}
{β : Type u_2}
{F : Set β}
{G : Graph α β}
[G.Simple]
:
(G.edgeDelete F).Simple
instance
Graph.instSimpleNoEdge
{α : Type u_1}
{β : Type u_2}
(V : Set α)
:
(Graph.noEdge V β).Simple
theorem
Graph.singleEdge_simple
{α : Type u_1}
{β : Type u_2}
{x y : α}
(hne : x ≠ y)
(e : β)
:
(Graph.singleEdge x y e).Simple
noncomputable def
Graph.incAdjEquiv
{α : Type u_1}
{β : Type u_2}
(G : Graph α β)
[G.Simple]
(x : α)
:
In a simple graph, the bijection between edges at x and neighbours of x.