Vertex-Connectivity #
ST-Connectivity #
Instances For
instance
Graph.instSetLikeSTVertexCut
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
{S T : Set α}
:
SetLike (G.STVertexCut S T) α
Equations
- Graph.instSetLikeSTVertexCut = { coe := fun (x : G.STVertexCut S T) => x.carrier, coe_injective' := ⋯ }
def
Graph.sTVertexCut_of_left
{α : Type u_1}
{β : Type u_2}
{S T : Set α}
(G : Graph α β)
(hS : S ⊆ G.vertexSet)
(hT : T ⊆ G.vertexSet)
:
G.STVertexCut S T
Equations
- G.sTVertexCut_of_left hS hT = { carrier := S, carrier_subset := hS, left_subset := hS, right_subset := hT, ST_disconnects := ⋯ }
Instances For
def
Graph.sTVertexCut_of_right
{α : Type u_1}
{β : Type u_2}
{S T : Set α}
(G : Graph α β)
(hS : S ⊆ G.vertexSet)
(hT : T ⊆ G.vertexSet)
:
G.STVertexCut S T
Equations
- G.sTVertexCut_of_right hS hT = { carrier := T, carrier_subset := hT, left_subset := hS, right_subset := hT, ST_disconnects := ⋯ }
Instances For
st-Connectivity #
- left_not_mem : s ∉ X
- right_not_mem : t ∉ X
- not_vertexConnected : ¬(G - X).VertexConnected s t
Instances For
@[simp]
def
Graph.stVxPreConn
{α : Type u_1}
{β : Type u_2}
(G : Graph α β)
(s t : α)
(n : Cardinal.{u_1})
:
Equations
- G.stVxPreConn s t n = ∀ (X : Set α), G.stCut s t X → n ≤ Cardinal.mk ↑X
Instances For
@[simp]
theorem
Graph.stVxPreConn_zero
{α : Type u_1}
{β : Type u_2}
(G : Graph α β)
(s t : α)
:
G.stVxPreConn s t 0
theorem
Graph.stVxPreConn.of_le
{α : Type u_1}
{β : Type u_2}
{G H : Graph α β}
{s t : α}
{n : Cardinal.{u_1}}
(h : H.stVxPreConn s t n)
(hle : H ≤ G)
:
G.stVxPreConn s t n
theorem
Graph.stVxPreConn.anti_right
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
{s t : α}
{n m : Cardinal.{u_1}}
(hle : n ≤ m)
(h : G.stVxPreConn s t m)
:
G.stVxPreConn s t n
theorem
Graph.stVxPreConn_iff_forall_lt
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
{s t : α}
{n : Cardinal.{u_1}}
:
@[simp]
structure
Graph.stEnsemble
{α : Type u_1}
{β : Type u_2}
(G : Graph α β)
(s t : α)
(ι : Type u_5)
:
Type (max (max u_1 u_2) u_5)
- f : ι → G.Subgraph
- internallyDisjoint : Graph.internallyDisjoint s t self.f
- stConnected (i : ι) : (↑(self.f i)).VertexConnected s t
Instances For
def
Graph.stEnsemble.of_le
{α : Type u_1}
{β : Type u_2}
{G H : Graph α β}
{ι : Type u_3}
{s t : α}
(P : H.stEnsemble s t ι)
(hle : H ≤ G)
:
G.stEnsemble s t ι
Equations
Instances For
def
Graph.stEmsemble.precomp
{α : Type u_1}
{β : Type u_2}
{G : Graph α β}
{ι : Type u_3}
{ι' : Type u_4}
{s t : α}
(P : G.stEnsemble s t ι)
(f : ι' ↪ ι)
:
G.stEnsemble s t ι'
Equations
Instances For
def
Graph.STVxConnectivity
{α : Type u_1}
{β : Type u_2}
(G : Graph α β)
(s t : α)
(n : Cardinal.{u_1})
:
Equations
- G.STVxConnectivity s t n = IsGreatest {m : Cardinal.{?u.28} | m ≤ Cardinal.mk ↑G.vertexSet ∧ G.stVxPreConn s t m} n